

Durability of Concrete Bridge Decks

Project Investigators

Nabil F. Grace, Ph.D., PE
University Distinguished Professor
Civil Engineering
Director, Center for Innovative Materials Research

Elin Jensen, Ph.D.
Associate Professor
Civil Engineering

MDOT Project Manager

Steve Kahl, PE Supervisor, Experimental Studies Group Michigan Department of Transportation

Corrosion of steel & concrete spalling

Plywood boards

Research Objective

- To develop performance based thresholds and procedures to identify concrete bridge decks experiencing high risk for falling concrete
- Scope
 - Laboratory investigation to quantify the development of concrete degradation and steel corrosion
 - freeze-thaw & salt-water exposure
 - repeated loading.
 - Field exploration to quantify in-service concrete degradation

Corrosion Development

- Corrosion rates up to 100 μm/year
- Critical chloride levels in concrete
 - 5 ± 4 lbs/cyd for black steel
 - 8 ± 7 lbs/cyd for epoxy coated steel
- Concrete PH levels < 9-11</p>

Image adapted from http://frpdistributors.com

This study

LABORATORY INVESTIGATION

FIELD INVESTIGATION

for Innovative Material Research

Reinforcement Details for Specimen

Reinforcement Cage & Form Work

Finishing the top surface

Concreting of Specimens

Finished Specimens (prior to moist curing)

Concrete Mix Proportions

Concrete Mix Design (D-MR)

Ingredients	Quantity (lbs/ cft)	Standards
Cement	24.4	ASTM C-150
Fine Aggregate	42.5	ASTM C-33
Coarse Aggregate - Manitoulin Dolo.	69.1	ASTM C-33
Water	9.9	ASTM C-94
Air entraining Admixture	o.8 oz	ASTM C-260
Water reducing Admixture	4 OZ	ASTM C-494
Mid-range water reducing Admixture	7 oz	ASTM C-494
CACL (Equivalent Calcium Chloride)	17.7 OZ	ASTM D-98

Without Introduced Cl

With Introduced Cl

Concrete supplier: McCOIG Materials

Concrete Info

Test Age (Days)	Without Introduced Cl	With Introduced Cl	
	Average Compressive Strength (psi)	Average Compressive Strength (psi)	
1	2,672	3,554	
3	3,439	4,459	
7	3,968	5,040	
28	4,898	6,070	
90	5,172	6,891	
	% Chloride by weight		
Rapid Chloride Test (RCT) (Acid Soluble)	0.07%	0.28%	
RCT-Water Soluble	0.07%	0.25%	

PH at 90 day

WITH CHLORIDE

WITHOUT CHLORIDE

Deep Purple Indicator:

Color: pH:

Flexural Strength

28 Day Flexural Strength (psi), ASTM C 78

Beam No.	Without Introduced Cl	Average (psi)	With Introduced Cl	Average (psi)
1	767		691	
2	755		760	
3	763	6	750	7/4
4	731	756	740	741
5	744		820	
6	78 0		687	

Beam Dimension: 6"×6"×20"

Cracking – prior to durability testing

Environmental Chamber

Environmental Chamber, F-T

Freeze – Thaw Cycles

Salt-Water Exposure

Specimens placed inside the Salt Water Tank

Loading Setup used for Cyclic Loading

Typical Load-Time Response

Typical Load-Displacement Response

Corrosion Potential

Corrosion Rate Assessment

Summary of Laboratory Investigation

- Active corrosion developing in CL doped members
 - > 50% risk of corrosion
 - <u>≈ 50 100 μm/year</u>
- Load response not affected by concrete degradation at this stage
- Exposure sequence continued

This study

LABORATORY INVESTIGATION

FIELD INVESTIGATION

Selected Bridges

- 2. 63022-S02-3 **I-96 WB MILFORD RD**
- 3. 63022-S01 **I-96 KENT LAKE RD**

Poor

Performers

4. 63172-S11 I-75 NB BALDWIN RD

5. 63043-S03-1 M-59 **SQUIRREL RD**

Good

Performers

* Based on MDOT performance index

Work Plan - Field

Example (I-75 over 14 Mile Rd, Troy, MI)

Source: Wikimapia.org

63174-S05-1 I-75 NB 14 MILE RD

Coring by MDOT Personnel

Coring full depth of the deck

Collecting the core

63174-S05-1 I-75 NB 14 MILE RD

NDT Performed on Slab Bottom

Measurement of Electrical Potential 32

Chloride Sampling – Rapid Chloride Test

12 - 16 samples collected from different depth.

Average weight of sample is 9.0 gm

Sample of concrete dust from Area 2 at a depth of 2cm.

Risk of Corrosion

63174-S05-1 I-75 NB 14 MILE RD

Location	Area 1	Area 2	Area 3
Average Potential (mV)	-315	-220	-150
Mean <u>+</u> Standard deviation (mV)	-357 -273	-251 -189	-161 -138
Risk of rebar corrosion	50%	50%	5%

Risk of Corrosion

Deck replacement scheduled

3D Tomography

MIRA (50 Hz shear waves)

3D Tomography

Summary of Field Investigation

- Results from NDT measurements are in excellent agreement with other indicators (3 sites)
- Coring to be completed by November 2010
- Chloride content is being determined
- 2 site visits scheduled for early summer 2011

Acknowledgements

- Michigan Department of Transportation
 - (Project No. 108621)

Center for Innovative Material Research, Lawrence Tech